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Abstract: – The minimal time system design algorithm was defined as the problem of functional minimization 
of the control theory. By this methodology the aim of the system design process with minimal computer time is 
presented as a transition process of dynamic system with minimal transition time. The optimal sequence of the 
control vector switch points was determined as a principal characteristic of the minimal-time system design 
algorithm. The different forms of the Lyapunov function were proposed to analyze the behavior of a design 
process. The special function that is a combination of Lyapunov function and its time derivative was proposed 
to predict the optimal control vector structure to construct a minimal-time system design algorithm. 
 
Key Words: - Minimal-time system design, control theory application, Lyapunov function. 
 
1 Introduction 
The problem of the computer time reduction of a 
large system design is one of the essential problems 
of the total quality design improvement. Besides the 
traditionally used ideas of sparse matrix techniques 
and decomposition techniques [1]-[5] some another 
ways were proposed to reduce the total computer 
design time [6]-[7]. The generalized approach for the 
analog system design on the basis of the control 
theory formulation was elaborated in some previous 
works, for example [8]. This approach serves for the 
minimal-time design algorithm definition. On the 
other hand this approach gives the possibility to 
analyze with a great clearness the design process 
while moving along the trajectory curve into the 
design space. The main conception of this theory is 
the introduction of the special control functions, 
which, on the one hand generalize the design process 
and, on the other hand, they give the possibility to 
control the design process to achieve the optimum of 
the design cost function for the minimal computer 
time. This possibility appears because practically an 
infinite number of the different design strategies that 
exist within the bounds of the theory. The different 
design strategies have the different operation number 
and executed computer time. On the bounds of this 
conception, the traditional design strategy is only a 
one representative of the enormous set of different 
design strategies. As shown in [8] the potential 
computer time gain that can be obtained by the new 
design problem formulation increases when the size 
and complexity of the system increase. However it is 

realized only in case when the algorithm for the 
optimal design strategy is constructed.  
 We can define the formulation of the intrinsic 
properties and special restrictions of the optimal 
design strategy as one of the first problems that 
needs to be solved for the optimal algorithm 
construction. 
 
2 Problem Formulation 
The design process for any analog system design can 
be defined in discrete form [8] as the problem of the 
generalized cost function ( )UXF ,  minimization 
by means of the vector equation (1) with the 
constraints (2): 
 
 s

s
ss HtXX ⋅+=+1      (1) 

 
 ( ) ( )1 0− =u g Xj j , j M= 1 2, , . . . ,     (2)  
 
where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of 
the independent variables and the vector MRX ∈′′  
is the vector of dependent variables ( MKN += ), 

( )Xg j  for all  j presents the system model, s is the 

iterations number, st is the iteration parameter, 
1Rts ∈ , H ≡H(X,U) is the direction of the 

generalized cost function ( )UXF ,  decreasing, U is 
the vector of the special control functions 
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( )U u u um= 1 2, ,..., , where uj ∈ Ω; { }Ω = 0 1; . The 

generalized cost function ( )UXF ,  is defined as: 
 

      ( ) ( ) ( )UXXCUXF ,, ψ+=     (3) 
 
where ( )XC  is the non negative cost function of the 
design process, and ( )UX ,ψ  is the additional 
penalty function: 
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This formulation of the problem permits to 
redistribute the computer time expense between the 
solution of problem (2) and the optimization 
procedure (1) for the function ( )UXF , . The control 
vector U is the main tool for the redistribution 
process in this case. Practically an infinite number of 
the different design strategies are produced because 
the vector U depends on the optimization procedure 
current step. The problem of the optimal design 
strategy search is formulated now as the typical 
problem for the functional minimization of the 
control theory. The functional that needs to minimize 
is the total CPU time T of the design process. This 
functional depends directly on the operations number 
and on the design strategy that has been realized. The 
main difficulty of this definition is unknown optimal 
dependencies of all control functions u j . 
 The continuous form of the problem definition is 
more adequate for the control theory application. 
This continuous form replaces Eq. (1) and can be 
defined by the next formula: 
 

( )dx
dt

f X Ui
i= , , i N=01, ,...,     (5)  

 
This system together with equations (2), (3) and (4) 
composes the continuous form of the design process. 
The structural basis of different design strategies that 
correspond to the fixed control vector includes 2M 
design strategies. The functions of the right hand part 
of the system (5) are determined for example for the 
gradient method as: 
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equal to ( )x t dti − ; ( )η i X  is the implicit function 
( ( )x Xi i=η ) that is determined by the system (2). 
 The control variables u j  have the time 
dependency in general case. The equation number j 
is removed from (2) and the dependent variable xK j+  
is transformed to the independent when u j =1. This 
independent parameter is defined by the formulas 
(5), (6'). In this case there is no difference between 
formulas (6) and (6'). On the other hand, the equation 
(5) with the right part (6') is transformed to the 
identity dx

dt
dx
dt

i i= , when u j =0, because. 

( ) ( ) ( ) iii
s
ii dxdttxtxxX =−−=−η . It means that at 

this time moment the parameter xi  is dependent one 
and the current value of this parameter can be 
obtained from the system (2) directly. This 
transformation of the vectors ′X  and ′′X  can be 
done at any time moment. The function ( )f X U0 ,  
is determined as the necessary time for one step of 
the system (5) integration. This function depends on 
the concrete design strategy. The additional variable 
x 0  is determined as the total computer time T for the 
system design. In this case we determine the problem 
of the time-optimal system design as the classical 
problem of the functional minimization of the 
optimal control theory. In this context the aim of the 
optimal control is to result each function ( )f X Ui ,  to 
zero for the final time T, to minimize the cost 
function and the total computer time x 0 . 
 It is necessary to find the optimal behavior of the 
control functions u j  during the design process to 
minimize the total design computer time. The 
functions ( )f X Ui ,  are piecewise continued as the 
temporal functions. 
 The idea of the system design problem 
formulation as the functional minimization problem 
of the control theory is not depend of the 
optimization method and can be embedded into any 
optimization procedures. In this paper the gradient 
method is used, nevertheless any optimization 
method can be used as shown in [8]. 
 Now the analog system design process is 
formulated as a dynamic controllable system. The 
time-optimal design process can be defined as the 
dynamic system with the minimal transition time in 
this case. So we need to find the special conditions to 
minimize the transition time for this dynamic system.  

Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, Tenerife, Canary Islands, Spain, December 16-18, 2006       256



www.manaraa.com

  

3 Lyapunov Function Definitions 
On the basis of the analysis in previous section we 
can conclude that the minimal-time algorithm has 
one or some switch points in control vector where 
the switching is realize among different design 
strategies. As shown in [9] it is necessary to switch 
the control vector from like modified traditional 
design strategy to like traditional design strategy 
with an additional adjusting. Some principal features 
of the time-optimal algorithm were determined 
previously. These are: 1) an additional acceleration 
effect that appeared under special circumstances [9]; 
2) the start point special selection outside the 
separate hyper-surface to guarantee the acceleration 
effect, at least one negative component of the start 
value of the vector X is can be recommended for this; 
3) an optimal structure of the control vector with the 
necessary switch points. The two first problems were 
discussed in [9-10]. The third problem is discussed 
in the present paper. 
 The main problem of the time-optimal algorithm 
construction is unknown optimal sequence of the 
switch points during the design process. We need to 
define a special criterion that permits to realize the 
optimal or quasi-optimal algorithm by means of the 
optimal switch points searching. A Lyapunov 
function of dynamic system serves as a very 
informative object to any system analysis in the 
control theory. We propose to use a Lyapunov 
function of the design process for the optimal 
algorithm structure revelation, in particular for the 
optimal switch points searching.  
 There is a freedom of the Lyapunov function 
choice because of a non-unique form of this 
function. Let us define the Lyapunov function of the 
design process (2)-(6) by the following expression: 
 
   ( ) ( )∑ −=

i
ii axXV 2      (7) 

where ia  is the stationary value of the coordinate ix , 
in other words the set of all the coefficients ia  is the 
main objective of the design process. The function 
(7) satisfies all of the conditions of the standard 
Lyapunov function definition for the variables 

iii axy −= . In fact the function ( ) ∑=
i

iyYV 2  is 

the piecewise continue. Besides there are three 
characteristics of this function: i) V(Y)>0, ii) V(0)=0, 
and  iii) ( ) ∞→YV  when ∞→Y . Inconvenience 
of the formula (7) is an unknown point 
a= ( )Naaa ,...,, 21 , because this point can be reached 
at the end of the design process only. We can use this 
form of the Lyapunov function if we already found 

the design solution someway. On the other hand, it is 
very important to control the stability of the design 
process during the optimization procedure. In this 
case we need to construct other form of the 
Lyapunov function that doesn’t depend on the 
unknown stationary point. Let us define two new 
forms of the Lyapunov function by the next 
formulas: 
 
       ( ) ( )[ ] rUXFUXV ,, =       (8) 
 

      ( ) ( )∑ 
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where F(X,U) is the generalized cost function of the 
design process. The formula (8) can be used when 
the general cost function is non negative and has zero 
value at the stationary point a. Other formula can be 
used always because all derivatives ixF ∂∂ /  are 
equal to zero in the stationary point a. So, the 
function V for both formulas has properties: 
V(a,U)=0, V(X,U)>0 for all X and at last, this 
function increases in a sufficient large neighborhood 
of the stationary point. Besides, the function V is the 
function of the vector U  too, because all coordinates 

ix  are the functions of the control vector U.  
  We can define now the design process as a 
transition process for controllable dynamic system 
that can provide the stationary point (optimal point of 
the design procedure) during some time. The 
problem of the time-optimal design algorithm 
construction can be formulated now as the problem 
of the transition process searching with the minimal 
transition time. There is a well-known idea [11]-[13] 
to minimize the time of the transition process by 
means of the special choice of the right hand part of 
the principal system of equations, in our case these 
are the functions ( )UXfi , . It is necessary to change 
the functions ( )UXfi ,  by means of the control 
vector U selection to obtain the maximum speed of 
the Lyapunov function decreasing (the maximum 
absolute value of the Lyapunov function time 

derivative dtdVV /=
•

). Normally the time derivative 
of the Lyapunov function is non positive for the 
stable processes. However we can define now more 
informative function as a time derivative of 
Lyapunov function relatively the Lyapunov function: 

VVW /
•

= . In this case we can compare the different 
design strategies by means of the function W(t) 
behavior and we can search the optimal position for 
the control vector switch points. 
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4 Structural Basis Analysis 
All examples were analyzed for the continuous form 
of the optimization procedure (5). Functions V(t) and 
W(t) were the main objects of the analysis and its 
behavior has been analyzed for all strategies that 
compose the structural basis of the design general 
methodology. The behavior of the functions V(t) and 
W(t) for the network of Fig. 1 is shown in Fig. 2a, 
and Fig. 2b. 
 
 

 
 

Figure 1. Two-node nonlinear passive network. 
 

 
The nonlinear element has the following dependency: 

( )2
2101 VVbyyn −+= . The vector X includes five 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = . 

The model of this network (2) includes two equations 
(M=2) and the optimization procedure (5) includes 
five equations. 
 The network in Fig. 1 is characterized by two 
dependent parameters (two nodal voltages) and the 
control vector includes two control functions: 
U= ( )21,uu . The structural basis of design strategies 
includes four design strategies; 00, 01, 10, 11. The 
Lyapunov function was calculated by formula (8) for 
r=0.5. As we can see from Fig. 2 the functions V(t) 
and W(t) can give an exhaustive explanation for the 
design process characteristics. Fig. 2a shows these 
functions behavior for the initial part of the design 
process (2% of the total design time). First of all we 
can conclude that the speed of decreasing of the 
Lyapunov function is inversely proportional to the 
design time. The minimal value of the Lyapunov 
function that corresponds to the maximum precision 
is approximately equal for all strategies and exactly 
is equal to 8.710-6, 1.710-5, 1.310-5, 2.010-5 for the 
strategies 00, 01, 10, 11 accordingly. We can see 
from Fig. 2b that after the minimal value decision the 
Lyapunov function increases a little. This small 
increasing corresponds to the small positive value of 
the Lyapunov function time derivative. Later on this 
derivative aspire to zero and the Lyapunov function 
has a permanent value. 

  
(a) 

 

  
(b) 

 
Figure 2. Behavior of the functions V(t) and W(t) for 
four design strategies during the design process for 

network in Fig.1;  (a) – initial part of the design 
process, (b) – design process the whole with the final 

part in detail. 
 
 The relative design time for four design strategies 
is equal to 1, 0.44, 0.78 and 0.3 for the strategies 00, 
01, 10, 11 accordingly. This time was defined for the 
time point with the minimal value of the function V. 
As we can see from Fig. 2b a large absolute value of 
the function W(t) corresponds to a more rapid 
decreasing of the function V(t) and a smaller 
computer design time. 
 Other example corresponds to the network in 
Fig.3. The vector X includes six components: 1

2
1 yx = , 

2
2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = , 66 Vx = . 

 The model of this network (2) includes three 
equations (M=3) and the optimization procedure (5) 
includes six equations. The total structural basis 
contains eight different strategies. The control vector 
has three components in this case and the structural 
basis consists of eight design strategies. The control 
vector includes three control functions: 
U= ( )321 ,, uuu . 
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Figure 3. Three-node nonlinear active network. 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 4. Behavior of the functions V(t) and W(t) for 
different design strategies during the design process 
for network in Fig.3;  (a) – initial part of the design 

process, (b) – design process the whole with the final 
part in detail. 

 
 As for the first example, Fig. 4a shows the 
behavior of the functions V(t) and W(t) for the initial 
part of the design process. The graphs in Fig. 4b 
correspond to a time interval when the majority of 
the design strategies are finished. The strategies with 
control vector 101 and 111 have extremely large 

value of the relative derivative W from the beginning 
of the design process and that is why the Lyapunov 
function is decreases very rapidly. The relative 
design time is very small for two these strategies and 
it is equal to 0.00057 and 0.00018 accordingly. The 
strategies with the control vector 001, 011 and 100 
have the sufficient level of the function W during the 
analyzed interval and the relative design time is equal 
to 0.0054, 0.0061 and 0.0114 accordingly. 
Nevertheless three other design strategies with the 
control vector 000, 010 and 110 are not finished 
during the presented interval. It occurs because the 
function W for these strategies decreases rapidly 
while the Lyapunov function had a relatively large 
value. After this the Lyapunov function decreases 
very slowly and the relative design time is equal to 
1.0, 0.127 and 0.027 accordingly. So, the main 
feature of the analyzed examples can be formulated 
by the next manner: the behavior of the Lyapunov 
function V and the relative time derivative W with 
confidence determine the design time. It means that it 
is possible be guided by means of these functions to 
predict the computer design time for any design 
strategy. We could analyzed the functions V(t) and 
W(t) behavior for the initial time interval only for the 
different strategies and on the basis of this analysis 
we can predict the strategies that have a minimal 
computer design time. 
 
5 Optimal Strategy Prediction 
As discussed above the principal element of the 
minimal time design algorithm is the optimal position 
of the control vector switch point. Some networks 
were analyzed from this viewpoint. The results of the 
analysis for the network in Fig.2 are shown in Fig 5 
and Table 1. 

 

 
 

Figure 5. Behavior of the functions V(t) and W(t) 
during the design process after the control vector 
switch for seven consecutive steps of the switch 

points (from 33 to 39) for network in Fig.2. 
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 Behavior of the functions V(t) and W(t) help us to 
determine the optimal position of the control vector 
switch point. Take into account the preliminary 
reasons about the optimal algorithm structure [9] we 
have been analyzed the strategy of the special 
structure that consists of two parts. The first part is 
defined by the control vector (111) and the second 
part is defined by the control vector (000). The 
optimal switch point was a principal objective of this 
analysis. The consecutive change of the switch point 
was realized for the integration steps from 2 to 50. 
The behavior of the functions V(t) and W(t) for the 
optimal switch step and some steps near the optimal 
are shown in Fig. 5. The data which correspond of 
these graphs are presented in Table 1. The analysis 
shows that the optimal switch point corresponds to 
the step 36 (graph with dots). The computer design 
time has a minimal value for this step. 
 

Table 1. 
 

 
 
 We can see that the function W(t) has a maximum 
absolute value for the optimal switch step (number 4) 
leading off the 15th integration step. It means that 
from the 15th step we can confidently predict the 
optimal switch point position that leads to the 
minimal computer design time. So, the structure of 
the optimal control vector i.e. the structure of the 
time optimal design strategy can be defined by 
means of the function W(t) analysis. 
 
6 Conclusion 
The problem of the minimal-time design algorithm 
construction can be solved adequately on the basis of 
the control theory. The design process in this case is 
formulated as the controllable dynamic system. The 
Lyapunov function and its time derivative include 
the sufficient information to select more perspective 
design strategies from infinite set of the different 
design strategies that exist into the general design 
methodology. The special function W(t) was 
proposed to predict the structure of the time optimal 
design strategy. This function can be used also to 

construct the optimal sequence of the control vector 
switch points. The solution of this problem permits 
to construct the minimal-time system design 
algorithm. 
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N Switch Iterations Total
point number design

   time (sec)
1 33 2433 0.404
2 34 2180 0.361
3 35 1748 0.289
4 36 61 0.01
5 37 1705 0.281
6 38 2111 0.349
7 39 2349 0.389
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